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Abstract1 -- Future orbiting sensor constellations will consist of 
tens, hundreds, or even thousands of spacecraft, each capable of 
generating enormous amounts of data.  Managing these 
constellations will require the spacecraft to be autonomous, 
deciding without human intervention what observations to make 
and asynchronously reporting results.  The need for a robust 
and efficient shared network infrastructure combined with the 
desire to provide direct connectivity between orbiting 
instruments and scientists on the Internet, argues for using IP 
and IP-based protocols end-to-end. 

We believe the current model is not well-suited for future 
sensor webs.  Drawing from NASA vision documents for 
future sensor network requirements, we have derived the 
following requirements: 

1. Direct IP-level connectivity is required between orbiting 
elements (instruments) and Internet-based hosts 
(investigators and data consumers). 

2. Future orbiting constellations need to support elements in 
different orbits (e.g. LEO, MEO, GEO) with connectivity 
among them.  In particular, some elements might not 
always, or ever, have direct connectivity with ground 
stations. 

 
This paper describes a standards-based architecture for end-to-
end IP between orbiting assets and Internet-based hosts.  The 
main elements are: 1) Security  provided by a mix of IPSEC and 
the more bit-efficient SCPS-SP security protocols  2) a MobileIP 
implementation that takes advantage of scheduled connectivity 
to reduce overhead and 3) Resource reservation to limit loss and 
hence increase the goodput across the space-to-ground link.  We 
have also developed a link-layer driver that allows us to run 
standard space link telecommand and telemetry protocols over 
Ethernet for easy lab integration of instruments. 

3. The orbiting elements will share a common 
communications infrastructure.  That is, a single LEO 
satellite might function as a router for several GEO 
satellites. 

4. Future instruments will be autonomous or semi-
autonomous.  This will allow the instruments to 
dynamically vary the frequency and resolution of their 
measurements in response to conditions. 

 
In a previous paper [1] we verified the feasibility of the above 
elements in isolation and quantified the performance 
enhancements they provided though simulation and rapid 
prototyping.  This paper describes the current state of 
standardization of the NGSI protocols within the Consultative 
Committee for Space Data Systems (CCSDS) and the current 
system demonstration.  The NGSI technologies are being tested 
in a realistic environment, with the emulated instrument, 
ground station, control center, and principal investigator 
distributed across the country. 

5. Future instruments will produce extremely large raw data 
sets that may be passed between spacecraft and 
processed on orbit. 

6. Efficiency of communication over the space-to-ground 
link is highly desirable.  We assume that the data 
products generated on orbit, even after processing, will 
be large enough so as to consume all available downlink 
capacity. I. INTRODUCTION 

Current space missions rely on highly managed 
communications.  There is no direct interaction between users 
(investigators or data recipients) and spacecraft instruments.  
All such interactions are filtered through the spacecraft 
control center and usually involve human processing and 
intervention.  This works well when there are relatively few 
space assets, where communication with each can be 
independently scheduled, and where data volumes are 
predictable. 

As a result of these assumptions, we propose a completely IP-
based system for the ground and space segments, with 
extensions to increase efficiency. 

The rest of this paper is organized as follows.  Section II 
describes the NGSI system architecture.  Section III describes 
the NGSI system architecture in detail, and Section IV our 
standardization efforts.  Section V describes our current 
system implementation and demonstration.  Section VI 
contains concluding remarks and areas of future study. 

II. NGSI SYSTEM ARCHITECTURE 
                                                           

Three main elements are required in order to connect space 
assets with Internet-based hosts: 1) security, 2) support for IP 

1  This work was performed under contract to NASA Jet Propulsion 
Laboratory in support of ESTO/AIST task AIST-99-0031 



mobility, and 3) resource reservation.  This section begins 
with the overall system architecture then describes each of 
the elements in detail. 

The NGSI system architecture is shown in Figure 1, where 
different horizontal bands represent different views of the 
system.  At the top are the physical components: 
Investigators, a Control Center, a Ground Station, and 
possibly multiple spacecraft between the ground station and 
the destination.  Note that we make no assumption about the 
networks connecting the control center to either investigators 
or the groundstation.  One advantage of our architecture is 
that these can be completely open networks, including the 
Internet.  Also, we consider an architecture where there may 
be multiple space hops between an instrument and the ground 
station responsible for communicating with it. 
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Figure 1: System architecture. 

The ‘security’ band highlights the security aspects of the 
architecture, namely a set of security gateways that translate 
between IPSEC and the more bit-efficient SCPS-SP 
protocols.  While we have not implemented security on board 
the destination spacecraft in our prototype, its addition would 
be a simple matter. 

The IP band highlights the need for two IP tunnels.  One 
tunnel handles forward (from the PI to the spacecraft) traffic, 
and the other ensures that reverse traffic is routed through the 
security gateway at the control center. 

The bottom band illustrates how the different flows appear to 
RSVP.  In particular, a single unidirectional flow has four 
states: encapsulated in IPSEC, encapsulated in SCPS-SP and 
tunneled inside a MobileIP tunnel, encapsulated in SCPS-SP, 
and “native” (unencrypted and not tunneled). 

The basic requirements to implement the architecture are: 
security gateways at the control center and onboard each 
spacecraft requiring security; a MobileIP Foreign Agent in 
each groundstation; and an RSVP-capable network 
connecting the groundstation to the Internet users.  No 
changes are required to routers ‘in the middle’ of the Internet.  
Even the requirement for an RSVP-capable connection 
among ground users can be relaxed if the connection from the 

groundstation to the control center is via a guaranteed 
bandwidth connection that matches the space-to-ground link 
bandwidth. 

We also assume that each instrument is associated with a 
particular control center (though different instruments on the 
same spacecraft could have different control centers).  This 
lets us know how to establish the required MobileIP tunnels 
and lets Internet-based hosts set up IPSEC associations with 
fixed endpoints. 

A. Security 

Allowing direct access to space assets from hosts on the 
Internet requires security.  Authentication to ensure that only 
authorized users are granted access to the space link and 
encryption to ensure the privacy of science data are both 
primary concerns.  Under joint DoD/NASA sponsorship, a set 
of protocols were specified for use in bandwidth constrained 
environments.  This work, known collectively as the Space 
Communications Protocol Suite (SCPS), includes a Security 
Protocol, known as SCPS-SP [2]. 

SCPS-SP provides the same security services as its Internet 
counterpart, IPSec, but with significantly less overhead.  
Transport-layer performance-enhancing proxies developed as 
part of the SCPS work can also host security gateways that 
translate between IPSEC and SCPS-SP.  We use these 
gateways to allow terrestrial users to employ IPSEC while 
maintaining the efficiency of SCPS-SP across the space link.  
Each end user configures their system to user IPSEC tunnel 
mode when communicating with instruments, with the 
control center as the other end of the tunnel.  The control 
center decrypts the IPSEC traffic and re-encrypts using 
SCPS-SP for transmission to security gateways on board the 
spacecraft.  The security gateways on board the spacecraft 
can handle SCPS-SP communications with multiple distinct 
control centers, each with their own encryption. 

The basic setup is shown in , using a web server as 
the surrogate satellite instrument. 

Figure 2

Figure 2: IPSEC/SCPS-SP Security with Trusted Gateways 
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The SCPS-SP specification is algorithm neutral.  That is, it 
specifies the protocol but does not specify the algorithms to 
be used to provide security.  In the SCPS-SP reference 
implementation, for testing purposes, a simple XOR 



algorithm was used in place of an actual encryption 
algorithm.  For this project we have added two encryption 
algorithms to the SCPS-SP reference code and the SCPS 
gateway: the (former) U.S. Data Encryption Standard (DES), 
and a stronger variant known as triple DES (3DES).  

Another aspect of security that was not addressed in the 
earlier SCPS work was key management and key distribution.  
Testing of SCPS-SP was carried out with manually 
distributed and installed cryptographic keys.  For large-scale 
use, an automated means of distributing and managing keys is 
necessary.  In order to provide key management for the space 
environment, a tradeoff study was performed to examine 
what key management protocols were already in use, their 
strengths and weaknesses, and whether or not they could be 
used or adapted for the space community.  Alternatively, if 
none of the existing key management protocols could be 
used, then a custom protocol would have to be designed. 

The Internet community has developed a protocol known as 
the Internet Key Exchange (IKE).  This was one of the 
leading contenders for use in the space environment from 
several perspectives.  First, it is the Internet standard and 
therefore implementations would exist via the open-source 
community as well as commercially off-the-shelf.   Its 
adoption would also allow complete interoperability between 
ground-based and space-based assets requiring cryptographic 
keys.  However, IKE is a “heavy-weight” protocol with a 
considerable amount of overhead and it uses several round-
trip messages to perform its work.  As a result of the key 
management analysis study, it was determined that although 
IKE had considerable overhead, it was invoked infrequently 
and therefore the overhead would be bearable over 
constrained bandwidth links. 

As a result of the analysis, the version of IKE written for 
FreeBSD is being modified for use with SCPS-SP in the 
SCPS gateway environment.  The Racoon implementation of 
IKE assumes the use of an internal, kernel-owned key cache 
that is not used by the out-of-kernel SCPS protocols.  As a 
result, changes to both SCPS-SP and Racoon are being made 
to allow the key exchange to occur and for the SCPS gateway 
to obtain the keys for use in secure communications. 

B. MobileIP Extensions 

As orbiting spacecraft communicate with different ground 
stations, their points of attachment to the terrestrial network 
change.  If the groundstations with which they are 
communicating are at different locations in the Internet 
topology (if they are on different IP subnets, e.g.), then the 
spacecraft appear to Internet hosts like a mobile users, similar 
to someone with a laptop moving between home, work, and 
other locations. 

Mobile IP, as specified in RFC 2002 [3], was designed to 
permit mobile agents to move randomly through the Internet 
while still receiving datagrams at a fixed address.  It is 

natural, then, to want to apply MobileIP to the spacecraft 
environment. However, the protocol overhead required for 
each ground station connection is not conducive for real time 
communication. 

In MobileIP, mobile units connect with ‘Foreign Agents’ that 
assist in delivering IP packets to the mobiles.  Mobiles 
discover foreign agents by means of router solicitation and 
router advertisement messages.  For spacecraft, these 
messages would have to be transmitted over the space link, 
consuming precious bandwidth and time during each contact. 

Once it has contacted a foreign agent, the mobile node 
receives a care-of address that provides information as to its 
current point of attachment to the Internet. The mobile node 
registers this care-of address with its home agent, who 
tunnels datagrams destined for the mobile agent to this care-
of address. MobileIP specifies a preferred method of 
acquiring a care-of address through foreign agents, where the 
foreign agent acts as the endpoint of the tunnel, decapsulates 
received datagrams, and delivers them to the mobile node. 
This setup, while straightforward, may be too time- and 
bandwidth-consuming in the limited resource environment of 
spacecraft communication. 

On the other hand, spacecraft do not move randomly. 
Contacts between spacecraft and ground stations are 
scheduled, with a priori agreement of established state. Our 
work takes advantage of this agreement and has implemented 
extensions to MobileIP, allowing for real-time user-to-
payload interaction. 

Consider the spacecraft to be a mobile node, the ground 
station as foreign agent, and the control center as home agent. 
Then making use of the a priori knowledge of state, the 
ground station  (in its role as foreign agent) can act as a proxy 
for the mobile node. Knowing that the spacecraft is about to 
make contact, the ground station pre-registers with the 
control center and sets up the tunnel. The objective is for 
datagrams destined for the spacecraft to arrive as the space-
ground contact is established. (Note: This is an application of 
the Just-in-Time scheduling used in many manufacturing 
operations.) From its perspective, the spacecraft assumes 
foreign agent and tunnel functionality will be in place and 
prepares any outgoing datagrams for download. 

For connection handoffs, the next ground station will begin 
the proxy registration slightly before the current station 
reaches loss-of-signal (LOS).  This prevents an undue 
number of dropped datagrams due to misrouting – which can 
result if the current tunnel is still in place after LOS is 
achieved. If the next tunnel is established slightly before  its 
ground station makes contact, the station will queue the data.  

We have incorporated these modifications to the base 
protocol of the Dynamics – HUT MobileIP system [4]. This 
is a Linux implementation of Mobile IP, which we installed 
on a Red Hat 7.1 distribution. The mobile node, foreign agent 
and home agent were run on different machines. The IP-in-IP 



tunneling support was loaded and configured as a kernel 
module. 

Cisco has recently developed a ‘mobile router’ product that 
can provide some of the same benefits as the extensions we 
have developed here.  The mobile router technology is 
targeted primarily at the automobile and aircraft industries as 
a way of simplifying MobileIP for travelers.  The mobile 
router is simply a mobile node with routing functionality. 

Table 1

Table 1: Comparison of NGSI and Mobile Router Features 

 shows a comparison of the mobile router and NGSI 
MobileIP approaches.  Because the mobile router is designed 
to work in ‘standard’ MobileIP environments where user 
mobility may not be predictable, it keeps the mobile—foreign 
agent signaling.  This is exactly the overhead we were 
attempting to avoid in designing the NGSI MobileIP 
extensions.  In addition, the mobile router establishes two IP-
in-IP tunnels, the standard one from the home agent to the 
foreign agent, and a second IP-in-IP tunnel from the home 
agent to the mobile.  This inner tunnel crosses the FA – 
mobile link, which in our case would be a ground-to-space 
link. 

Feature Cisco Mobile 
Router 

NGSI MobileIP 
Extensions 

Mobile – FA 
Signaling 
(Across the 
space-to-
ground-link) 

Yes – Router 
solicitation / 
Advertisement 
and Mobile 
Registration 

NO – MobileIP 
tunnels configured 
from the ground 
before acquisition of 
signal (AOS) 

Per-Packet 
Overhead 
between FA and 
Mobile (Across 
the space-to-
ground link) 

20 bytes per 
packet of IP-in-IP 
encapsulation 

None 

Operation in 
multi-hop 
constellation 
environments 

No – Router 
solicitations and 
advertisements 
are link layer 
broadcasts 

Yes – MobileIP 
tunnels initiated on 
the ground can 
direct traffic to 
arbitrary uplinks 

We believe that these limit the utility of the mobile router 
technology to situations where there is only a single hop 
between ground and spacecraft and where efficiency is not an 
issue. 

C. Resource Reservation 

Because of the expense and scarcity of bandwidth between 
space assets and the ground, preventing data loss and 
subsequent retransmission is of great concern.  This is 
particularly difficult in the case where multiple semi-
autonomous spacecraft need to share communications 
resources.  If too many sources try to use the same resource 

(link) concurrently, they will congest it and the result will be 
dropped packets and data loss. 

The Resource reSerVation Protocol (RSVP) used in the 
Internet can prevent data loss due to congestion by allowing 
flows to reserve bandwidth and buffer space in intermediate 
routers.  Our work with RSVP has been to adapt it to our 
environment and to integrate it with the other work packages, 
specifically MobileIP and the security gateways mentioned 
above. 

RSVP is an end-to-end protocol for resource reservation, and 
hence touches all of the other work areas.  Here we describe 
our modifications to the ISI reference implementation of 
RSVP [5] that allow it to function in the NGSI environment. 

The security gateways present a special challenge to RSVP, 
as the RSVP design did not anticipate cases where the IP 
protocol field changes in transit.  To preserve reservations as 
flows change security measures, the RSVP daemons on the 
security gateways were modified to manipulate the IP 
protocol fields of RSVP filterspec messages.  Thus RSVP 
messages that arrive reserving IPSEC flows leave reserving 
SCPS-SP flows, and vice versa. 

The MobileIP tunnels used to forward data between home 
and foreign agents also required changes to the RSVP 
daemons running on those hosts.  RFC 2746[6] defines 
mechanisms to allow RSVP to operate over IP tunnels, but no 
suitable implementation existed for the Linux operating 
system (we chose the HUT MobileIP implementation, which 
runs under Linux).  We thus plan to implement the tunnel 
functionality described in RFC2746 in the Linux RSVP 
implementation.  This requires an IP-in-UDP encapsulation 
mechanism so that RSVP could distinguish between tunneled 
flows (all of which have the same source and destination IP 
addresses – those of the tunnel endpoints). 

The Crypto IP Encapsulation (CIPE [7]) distributed with 
recent Linux kernels provides IP-in-UDP encapsulation (with 
optional encryption).  However the interface required to set 
up and manage CIPE tunnels is significantly different from 
that used for managing the IP-in-IP tunnels that the HUT 
MobileIP daemon expects.  In addition, CIPE was designed 
for VPN-type applications, where manual administration of 
tunnels is feasible.  For our application we needed a system 
capable of dynamic tunnel management via an application 
programming interface (API) rather than a configuration file. 

We thus chose to modify the IP-in-IP driver to include an 
extra UDP header.  Issues with this approach include 
changing the Maximum Transfer Unit (MTU) to avoid IP 
fragmentation, the ability of RSVP to correctly identify the 
interface (since the IP-in-UDP interfaces are not physical 
interfaces) and the performance of traffic control over these 
interfaces.  The MTU issues are easily solved at the endpoints 
or the transport-layer gateways, and the Linux RSVP 
implementation does recognize the virtual drivers as 
interfaces. 



We found that the performance of the various traffic control 
mechanisms varied widely depending on the operating 
system and link layer.  The goal was to characterize the 
traffic control characteristics to determine their impact on 
overall performance.  In particular, there are known issues 
with the class-based queueing (CBQ [8]) mechanisms used in 
both the Linux and FreeBSD implementations that can cause 
them to under-perform, especially when examined over short 
time periods.  For a deployed system we would be relying on 
the traffic shaping of the routers (e.g. Cisco, Juniper, …), 
which is considerably better than the Linux or FreeBSD 
implementations. 
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For our system, CBQ was provided by the altq package [9] in 
FreeBSD and by the native 2.4-kernel traffic control [10] in 
Linux.  As a first measure, we simply examined the traffic 
control mechanisms’ abilities to shape traffic.  This provides 
the foundation for resource reservation, as we would like to 
be able to provide minimums for both reserved and non-
reserved traffic, as well as to allow each to borrow unused 
bandwidth from the other. 

For plain, non-encapsulated IP traffic, the Linux cbq provided 
much better performance, able to shape traffic to within a few 
hundred kilobits per second of the target rate, and provided 
good borrowing properties between classes.  The altq 
implementation was much coarser, generally over-limiting 
bandwidth by several megabits per second.  Linux traffic 
control performance dropped dramatically when used over an 
encapsulating interface (either the IP-in-UDP or the CCSDS 
links).  In these cases linux tc’s ability to rate control traffic 
approached altq’s.  This should not pose significant problems 
at low data rates, but could significantly impact performance 
as data rates increase past around 10Mbps. 

III. STANDARDIZATION 

The market for space communications equipment is relatively 
small, certainly when compared to the Internet.  At the same 
time, NASA and other nations’ space agencies are anxious to 
leverage the interoperability that comes from standardizing 
space technologies, whether they be communications 
protocols or hardware specifications. 

We are standardizing mechanisms within the Consultative 
Committee for Space Data Systems (CCSDS)[11].  The 
CCSDS standardization process currently consists of two 
‘tracks’ as shown in : a ‘standards’ track and an 
‘experimental’ track.  The standards track is for technologies 
that have hard mission requirements, i.e. technologies that 
missions under development or in the planning stage are 
willing to commit to for operational use.  The experimental 
track is for technologies that have prospective application but 
which no mission has yet committed to fly.  At the current 
time a number of projects fall into this ‘experimental’ 
category, including most IP-based mission designs. 

Figure 3

Figure 3: CCSDS Standardization Tracks 

The goal of the experimental track is to provide a forum to 
flesh out how advanced technologies can be applied to 
missions and to develop concepts of operations.  If the 
technology proves compelling, the proposed standards can be 
reviewed and quickly moved to and along the standards track. 

The NGSI work described here is being standardized in the 
experimental track, under the Next Generation Space Internet 
working group within CCSDS. 

IV. SYSTEM DEMONSTRATION 

To demonstrate the feasibility of the proposed approach, we 
first constructed a lab demonstration of the proposed 
technologies.  This year we have moved the demonstration 
out of the lab so that the various elements, PI, control center, 
ground station, and satellite are geographically and 
topologically distributed.  The emulated PI is located in 
Greenbelt, MD, the control center in Columbia, MD, the 
ground station in McLean, VA, and the simulated satellite is 
at the Jet Propulsion Laboratory in Pasadena, CA. 
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Figure 4: NGSI Distributed Demonstration 



The various machines have all been ‘hardened’ with security 
measures, showing that the NGSI technologies can function 
in highly secure environments. 

Splitting the simulated satellite between JPL (on the West 
coast) and MITRE (in Virginia) is a result of the CCSDS link 
layer implementation.  The CCSDS link layer emulator 
allows the demonstration to use real space link telementry 
and telecommand protocols, but the implementation we have 
requires that the two ends of the link be on the same Ethernet 
segment.  A future version of the demonstration will use 
VTUN’s ability to tunnel Ethernet over IP to shift the space 
link endpoint to JPL. 

V. CONCLUSIONS AND FUTURE WORK 

One of the biggest challenges to deploying the architecture 
described here is the inclusion of RSVP.  RSVP is needed 
both to increase efficiency over the space link and to provide 
an automated resource arbitration mechanism that frees 
human operators from being involved in bandwidth 
provisioning.  The difficulty is that ISPs do not generally 
support users sourceing RSVP requests through their 
networks.  A solution to this for TCP-based traffic would be 
to acquire a guaranteed-bandwidth VPN service between 
ground stations and control centers that would pass the RSVP 
signaling.  Provided that the VPN has capacity equal to or 
greater than the space link, there will be no loss in this 
portion of the network.  The security gateway in the control 
center could then terminate the RSVP signaling.  There is no 
danger of (unrecoverable) loss between the control center and 
the PI because the SCPS security gateway implementation 
also contains a transport-layer gateway.  The security 
gateway actually terminates TCP connections coming from 
the satellite and starts separate ones with Internet-based hosts.  
Thus any losses incurred between the control center and 
Internet-based hosts would incur retransmissions from the 
control center, not from the instrument (and hence not across 
the space link). 

The next step in advancing the Technical Readiness Level 
(TRL) of the NGSI technologies will be to field them on a 
suitable flight demonstration.  The difficulty of porting the 
required protocols to a flight environment will range from 
trivial to moderate depending on the operating system of the 
target spacecraft. 

This work is nearing the end of the standardization process in 
the CCSDS experimental track.  The results, both 
specifications and code, will be maintained by CCSDS so that 
future missions will be able to review them and quickly 
convert them to full international standards. 
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